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Introduction

Stroke is among the major leading causes of disability 
world-wide.1 Approximately 15% to 50% of stroke patients 
suffer from aphasia, a language impairment affecting lan-
guage reception and/or expression.2 Patients suffering from 
aphasia exhibit reduced quality of life and inter-subject 
variability in the degree of language recovery after stroke is 
high.3 Elucidating factors that help to predict the severity of 
language impairment may assist clinicians in addressing the 
needs of the individual patient and allocating treatment 
resources to expected recovery trajectories to achieve the 
best possible recovery outcome.1

A variety of inter-related demographic, clinical, and neu-
roimaging variables may predict aphasia severity post-
stroke.4 An association between lower age at stroke,5-8 
longer time since stroke onset,6,9 lower initial aphasia sever-
ity,5,9,10 higher post-stroke non-verbal cognitive ability,6 

sex,8 and better language function after stroke has been sug-
gested. Larger lesion size was additionally associated with 
poorer aphasia recovery.5,8,9,11,12 Lesion load in language-
relevant fiber tracts, such as the arcuate fasciculus, com-
bines information on lesion size and lesion location and has 
been negatively associated with different language aspects 
after stroke, such as speech fluency and naming ability.13-16 
Quantifying lesion location beyond large-scale classifiers 
(eg, lesion load, affected cerebral lobes, and cortical and 
subcortical lesion location)11,17,18 has been difficult and 
incorporation of such information into prediction models 
remained challenging.

The lack of suitable quantitative metrics has limited the 
development of prediction models respecting the fact that 
language is a complex cognitive function distributed across 
multimodal cortical networks.19,20 Two major language 
networks can be distinguished. The posterior language 
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network, essential for language comprehension, comprises 
the posterior superior temporal cortex, the posterior pari-
etal cortex as well as their white matter (WM) connections 
(superior longitudinal fasciculus and arcuate fasciculus) to 
the posterior inferior frontal cortex.19 The anterior lan-
guage network, crucial for semantic processing, connects 
the anterior inferior frontal cortex with the anterior tempo-
ral lobe via WM fibers including the uncinate fascicu-
lus.19,21 Focal or diffuse alterations of WM fibers defining 
these distributed language networks have distal conse-
quences at terminating gray matter (GM) regions with 
comparable function to direct GM lesions.13,14,22

The transition of connectome-based data into clinical 
practice has been limited, as the standard approach to iden-
tify connectivity disruptions in the brain (diffusion tensor 
imaging [DTI]),23 requires the acquisition of certain mag-
netic resonance (MR) sequences that are usually not part of 
clinical imaging protocols in stroke patients. Model-based 
approaches, such as the Network Modification (NeMo) tool 
provide an alternative metric for the quantification of struc-
tural brain connectivity changes based on routinely col-
lected clinical MR images.24,25

The aim of this post-hoc analysis of the – so far – largest 
set of patients with post-stroke aphasia from the Non-
Invasive Repeated Therapeutic Stimulation for Aphasia 
Recovery (NORTHSTAR) trial,26,27 is to establish a frame-
work for integrating information on structural connectivity 
disruption of language-specific GM regions, in addition to 
demographic and clinical factors, into Random Forest 
machine-learning models to predict post-stroke language 
function. We hypothesize a high level of connectivity dis-
ruption in the posterior language network, especially a low 
WM integrity of the superior temporal gyrus (STG), to 
improve prediction of impaired language comprehension. 
We further hypothesize a low level of WM integrity of the 
anterior language network, specifically the middle temporal 
gyrus (MTG), to improve prediction of impaired semantic 
processing and lexical access, resulting in lower scores in 
the BNT and sVF.

Methods

Study Setting

Patients analyzed in this study were part of the NORTHSTAR 
clinical trial (ClinicalTrials.gov Identifier: NCT02020421), 
performed between 2014 and 2019.28 Participants were 
recruited from 5 participating centers across Canada, the 
United States, and Germany. The study was approved by 
the ethics committee of each institution and written 
informed consent was obtained from each subject according 
to the Declaration of Helsinki. Participants were random-
ized to receive 10 days of either repetitive transcranial mag-
netic stimulation (rTMS), transcranial direct current 
stimulation (tDCS), or sham stimulation, followed by 
45 minutes of individualized speech therapy.26-28

Participant Selection

Patients included in the NORTHSTAR trial had (a) an isch-
emic stroke in the left middle cerebral artery territory, (b) a 
score below-limit (defined as −2 standard deviations below 
age-matched norms) in at least one of the primary outcome 
measures, and (c) were recruited in the subacute phase 
(≤45 days post-stroke) or chronic phase (≥6 months post-
stroke).27 From the initial set of patients included in the 
NORTHSTAR trial (n = 91), a total of 76 patients were 
included in the baseline (BL) analysis and 67 patients in the 
follow-up (FU) analysis (Figure 1).

Behavioral Evaluation

Primary outcome measures comprised 3 language tests, 
with available norms in English, French, and German lan-
guage.26 Receptive language function was assessed with a 
sentence comprehension test (shortened version of the 
Token Test, TT),29 and language expression was measured 
with a picture naming test (Boston Naming Test, BNT),30 
and a Semantic Verbal Fluency (sVF) Test.31 Scores of all 3 
language tests were transformed into standardized scores 
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(z-values), using the mean and standard deviation derived 
from our total patient population at BL. All measures were 
acquired at BL, as well as 1 and 30 days after the last treat-
ment session to allow for longitudinal analyses. A non-ver-
bal subscore of the Montréal Cognitive Assessment (MoCA) 
was used to measure initial non-verbal cognitive ability, 
composed of the subtests visuospatial, attention, delayed 
recall, and orientation. The MoCA subtests naming, lan-
guage, and abstraction were excluded, as they heavily rely 
on language function.

Imaging Data

For 74 of the 76 patients, an individual 3T MR scan was 
acquired in the respective study center, using the well-
established ADNI (Alzheimer’s Disease Neuroimaging 
Initiative) protocol. An anatomical T1-weighted image with 
1mm isotropic resolution was obtained, followed by a 
T2-weighted fluid-attenuated inversion recovery (FLAIR) 
sequence (2 mm × 2 mm × 2mm). For 2 patients, a com-
puted tomography (CT) scan was acquired instead of the 
MR scan.

Assessment of Structural Connectivity Disruption

Structural connectivity disruption resulting from a given 
lesion was assessed using the NeMo tool.25 The NeMo tool 
superimposes the patient’s individual infarct mask onto a DTI 
tractogram reference set derived from 420 healthy control 
subjects in Montréal Neurological Institute (MNI) common 
stereotaxic space.25 Infarct masks were hand-drawn according 
to hypo- or hyperintensities in the T1 and T2 FLAIR images 
or CT image, respectively, after which 2 stroke neurologists 
adjudicated the masks and agreed upon corrections if deemed 
necessary. Patients’ T1 scans were brain-extracted using the 
Freesurfer autorecon1-tool. For the 2 CT scans, the Freesurfer 
SynthStrip tool was used.32 Brain-extracted scans were nor-
malized to the MNI152 template, using a linear rigid body and 
affine normalization, followed by a non-linear transformation 
using the ANTs SyN (Advanced Normalization Tools, 
Symmetric Image Normalization) algorithm.33 For MR scans, 
the lesion was masked out to optimize the normalization 
results.33 For CT scans, optimal normalization results were 
obtained without lesion masking. Linear and non-linear trans-
formation matrices were applied to the infarct masks, which 

Figure 1.  Patient selection for baseline and follow-up analysis.
Abbreviations: NORTHSTAR, Non-invasive Repeated Therapeutic Stimulation for Aphasia Recovery; BL, baseline; FU, follow-up.
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were subsequently entered into the online NeMo toolbox 
(NeMo v2.1a8).25 Default options were used within the NeMo 
tool (probabilistic tractography, streamline weighting by data 
fit). For a detailed description of the NeMo workflow refer to 
Kuceyeski et al.25

Change in Connectivity (ChaCo) scores were calcu-
lated as the ratio between the total number of fibers con-
necting a given GM region to the rest of the brain and the 
number of those fibers passing through an area of infarct. 
For GM parcellation, the Automated Anatomical Labeling 
(AAL) cortical and subcortical region atlas was used.34 To 
minimize the probability of type II statistical errors, we 
pre-selected 13 language-relevant GM regions of the left 
hemisphere (Table 1). Regions of interest (ROIs) were 
selected based on their involvement in language produc-
tion and/or language comprehension as identified through 
a literature review of functional imaging studies.20,35-37 
Respective right-hemispheric homologues of pre-defined 
ROIs were additionally included. To cover the whole 
brain, residual left-hemispheric and right-hemispheric 
regions (excluding the 13 left-hemispheric ROIs and their 
right-hemispheric homologues) were merged into 2 sepa-
rate volumes. Labels of interest in the AAL atlas were 
dilated by 1mm to ensure the NeMo tool captures stream-
lines ending at the border between WM and GM. A higher 
ChaCo score corresponds to a higher estimated connectiv-
ity disruption experienced by a given GM region.25

Variable Selection for Random Forest Prediction

Several demographic, clinical, and brain-structural variables 
were selected for inclusion into the multivariable Random 

Forest prediction models. Besides the connectivity disrup-
tion scores of the 13 language-relevant left-hemispheric 
ROIs, their right-hemispheric homologues, the residual left 
and right hemisphere, age at aphasia onset, sex, education, 
number of days between stroke and BL assessment, initial 
non-verbal cognitive ability, and lesion volume were 
included. Lesion volume was assessed after normalization to 
MNI space to account for variance in total brain volume 
between subjects. For models predicting language function 
at 30-day FU, the BL language score of the respective test as 
well as the treatment arm of the patient (rTMS, tDCS, or 
sham) were included as additional predictor variables.

Random Forest Machine-Learning Algorithm

A supervised machine-learning approach, that is, Random 
Forest algorithm, was used to predict patients’ language 
function. The Random Forest algorithm is based on the con-
cept of ensemble learning, that is, the individual predictions 
of a multitude of decision trees are combined to increase the 
prediction accuracy compared to a single model.38 A deci-
sion tree consists of a root node, branches, and leaf nodes, 
where each node represents a predictor variable and each 
branch represents a binary split option of that variable.39 At 
each node, the algorithm searches the best split variable in a 
subset of 1/3 of the predictor variables. For each decision 
tree, a bootstrapped training sample is drawn from the data 
pool, comprising by default 2/3 of the whole patient sample. 
The other 1/3 of patients is used as the test sample for inter-
nal validation. The algorithm predicts the test data, using 
the decision trees grown on the training data. The predic-
tions of each individual regression tree are then aggregated 

Table 1.  Connectivity Disruption of Language-Relevant Gray Matter Regions After Stroke.

Left hemisphere ChaCo (n = 76) Right hemisphere ChaCo (n = 76)

IFG pars opercularis 0.58 (0.36) Precentral gyrus 0.02 (0.02)
Rolandic operculum 0.56 (0.34) IFG pars triangularis 0.02 (0.02)
Insula 0.53 (0.33) Residual right hemisphere 0.02 (0.02)
Supramarginal gyrus 0.52 (0.36) IFG pars opercularis 0.01 (0.01)
IFG pars triangularis 0.47 (0.38) Rolandic operculum 0.01 (0.01)
Heschl gyrus 0.47 (0.38) Insula 0.01 (0.01)
Superior temporal gyrus 0.47 (0.35) Inferior parietal gyrus 0.01 (0.01)
Precentral gyrus 0.47 (0.30) Supramarginal gyrus 0.01 (0.01)
Inferior parietal gyrus 0.41 (0.30) Heschl gyrus 0.01 (0.01)
Angular gyrus 0.40 (0.36) Superior temporal gyrus 0.01 (0.01)
Middle temporal gyrus 0.38 (0.31) Angular gyrus 0.00 (0.01)
Superior temporal pole 0.29 (0.29) Superior temporal pole 0.00 (0.00)
Residual left hemisphere 0.18 (0.10) Middle temporal gyrus 0.00 (0.00)
Middle temporal pole 0.17 (0.23) Middle temporal pole 0.00 (0.00)

Abbreviations: ChaCo, Change in Connectivity; IFG, inferior frontal gyrus.
Connectivity disruption of brain regions was assessed through Change in Connectivity (ChaCo) scores of the Network Modification tool (Kuceyeski 
et al25). Residual left/right hemisphere refers to the remaining left/right hemisphere after excluding the 26 pre-selected regions of interest. Results are 
reported as mean (standard deviation).
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and the prediction error, defined as the squared difference 
between the predicted language score implied by the model 
and the actual observed language score, is calculated.38 The 
Random Forest approach has the advantage of showing the 
independent and complementary predictive effect of each 
individual input variable, without making assumptions on 
the relationship between certain predictor variables.38,40 
This avoids issues of non-normality and collinearity, which 
often are fundamental concerns in traditional regression 
models.1,40

The Random Forest model estimates importance of each 
predictor variable, defined as percentage increase of the 
prediction error of a model, when omitting a single predic-
tor variable from the model, while all other predictor vari-
ables remain unchanged, that is, it tells how much a model’s 
performance improves or deteriorates when omitting one of 
the predictor variables.41 The prediction error is captured 
with the mean squared error (MSE). For details of how 
MSE is assessed, see Breiman, 2001.38 Variable importance 
is reported as the percentage increase of the MSE 
(%IncMSE), with a higher %IncMSE specifying a larger 
role of the predictor variable in explaining the model vari-
ance.38 Based on previous methodology, a predictor vari-
able was considered relevant, if IncMSE ≥4%.18

The robustness of the Random Forest models was 
assessed by performing 500 repetitions of fitting 1.000 
decision trees. The model was deemed robust, when the 
standard deviation of the amount of total variance explained 
between the 500 Random Forests was <0.05.

Data Availability

The data supporting this study can be made available upon 
reasonable request to the corresponding author. The 
Network Modification tool used for model-based connec-
tivity analysis in this study, is an open-access online tool.25

Results

Demographic and Clinical Data

A total of 76 stroke patients were included in this study, of 
which 41% were female (n = 31). Patients had a mean age at 
stroke of 63.1 ± 11.86 years. The median normalized lesion 
volume of patients was 63.4cm3 (interquartile range: 27.50-
101.33 cm3). A lesion overlay map is shown in Figure 2. The 
mean initial non-verbal MoCA score was 8.9 ± 6.86 out of 
23 total points. The mean raw language test scores at BL 
were 15.3 ± 10.80 for TT, 18.8 ± 18.73 for BNT, and 
5.6 ± 6.18 for sVF (Table 2). Patients showed a significant 
mean absolute change over 30-day FU (n = 67) in all 3 tests 
(Wilcoxon Signed Ranks test, P < .001).

Connectivity Disruption

The average ChaCo score, measuring the connectivity dis-
ruption of the pre-defined 13 left-hemispheric ROIs over all 
76 patients was 0.4 ± 0.21 and significantly higher than the 
average ChaCo score of the residual left hemisphere 
(0.2 ± 0.10, Wilcoxon Signed Ranks test, P < .001), indi-
cating a higher degree of connectivity disruption of the pre-
selected language-relevant regions. Regions with the 
highest ChaCo scores were the left-hemispheric inferior 
frontal gyrus pars opercularis, rolandic operculum, insula, 
and supramarginal gyrus. ChaCo scores of right-hemi-
spheric ROI homologues were all ≤0.02, indicating mostly 
intact transcallosal connectivity (Table 1).

Random Forest Prediction of Language Function

A total of 34 predictor variables were included in the 
Random Forest prediction models at BL (age at stroke, sex, 
education, lesion volume, days since stroke, initial non-
verbal MoCA subscore, 13 left-hemispheric ROIs and 

Figure 2.  Lesion overlay map.
Abbreviations: L, left hemisphere; R, right hemisphere.
A lesion overlay map of all 76 stroke patients is displayed in glassbrain representation. Lesion masks were normalized to MNI space. A greater lesion 
overlay across patients is indicated by colors higher on the color scale.
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right-hemispheric homologues, and residual left and right 
hemisphere) and 36 at FU (treatment arm and BL language 
score in addition). Our BL prediction models explained 
63% of variance for TT, 47% for BNT, and 52% for sVF. 
Our FU models explained 76% of variance for TT, 84% for 
BNT, and 61% for sVF. Initial non-verbal cognitive func-
tion, as measured by the non-verbal MoCA subscore, con-
sistently emerged as the most predictive factor in all 3 BL 
models and second-highest predictive factor in the 3 FU 
models. Higher initial non-verbal cognitive function was 
associated with better post-stroke language function. A 
higher initial language test score was the most critical pre-
dictor variable in explaining better FU-outcomes for TT, 
BNT, and sVF. Smaller lesion volume showed a predictive 
effect for better language function in the BNT and TT mod-
els at both BL and FU, while time post-stroke showed a 
predictive effect in TT and sVF at BL, and BNT at FU. Age 
at stroke, sex, education, and treatment arm did not exhibit 
a relevant predictive effect in any model (<4% IncMSE). 
Connectivity disruption of language-relevant ROIs 
decreased the prediction error by up to 12.5% at BL and 
12.8% at FU (Figure 3).

Random Forest models identified connectivity disrup-
tion scores of the left MTG, STG, and supramarginal gyrus 
as the strongest brain-structural predictors for language pro-
duction (BNT). Connectivity disruption of the same 3 
regions, along with the left inferior parietal gyrus and angu-
lar gyrus, revealed the strongest brain-structural predictive 
effect for language comprehension (TT, Figure 4). 
Generally, smaller connectivity disruption scores of the 

included ROIs predicted better language function at both 
BL and FU.

The right insula was the only right-hemispheric ROI, for 
which connectivity disruption led to a slight improvement 
of the BL prediction models for language comprehension 
(TT) and language expression (BNT).

All Random Forest models were deemed robust. FU 
Random Forest models demonstrated a strong effect for all 
3 language tests (R2: 61%-84%), whereas BL models dem-
onstrated a moderate effect (R2: 47%-63%).

Discussion

We developed multivariable prediction models to explore 
how information on structural connectivity disruption could 
improve the prediction of language function after stroke 
beyond known demographic and clinical variables.

Small Predictive Effect of Demographic Variables 
for Aphasia Severity

Age at stroke, sex, and education did not contribute to the 
prediction of language function post-stroke in our models. 
Previous findings on the predictive effect of demographic 
variables for language function are controversial, with some 
studies reporting an association,5-8,15 and others reporting 
no such effect.8,17,42,43 Those inconsistencies might be 
driven by strong interrelations between co-existing predic-
tor variables, differing study designs, as well as studies 
being underpowered due to small sample sizes.6

Table 2.  Sample Characteristics of Patients After Stroke.

Total (n = 76)

Age at stroke in years, mean (SD), IQR 63.1 (11.86), 58.00-72.00
Sex, female/male (% female) 31/45 (40.8)
Education in years, mean (SD), IQR 13.7 (3.83), 11.00-16.00
Lesion volume in cm3, median (IQR)a 63.4 (27.50-101.33)
MoCA at BLb, mean (SD), IQR 8.9 (6.86), 2.00-14.75
TT at BL 15.3 (10.80)
TT at Day 30c 19.6 (11.35)
TT absolute change BL to Day 30c 3.8 (5.03)
BNT at BL 18.8 (18.73)
BNT at Day 30c 25.4 (21.42)
BNT absolute change BL to Day 30c 5.8 (7.92)
sVF at BL 5.6 (6.18)
sVF at Day 30c 8.9 (9.22)
sVF absolute change BL to Day 30c 2.8 (4.96)

Abbreviations: MoCA, Montréal Cognitive Assessment; TT, Token Test; BNT, Boston Naming Test; sVF, Semantic Verbal Fluency test; BL, baseline; 
IQR, interquartile range (25th-75th percentile); SD, standard deviation.
aLesion volume was calculated after normalization to MNI-space.
bThe MoCA subscore is composed of the language-independent subtests visuospatial, attention, delayed recall, and orientation.
cThe language score at Day 30 and the absolute change from BL to Day 30 refer to the subgroup of patients for which follow-up data was available 
(n = 67). Results are reported as mean (SD), unless otherwise specified.
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Time since stroke onset strongly predicted sVF at BL, 
with more days passed since stroke predicting a higher sVF 
score. This aligns with previous studies that report a pre-
dictive effect of longer time post-stroke for lower aphasia 
severity.6,9 The longer the time between stroke and lan-
guage assessment, the more treatment and language ther-
apy the patient likely received, and the more coping skills 
the patient possibly developed.6 Language gain might fur-
ther be positively influenced by processes of neural 

reorganization, such as sprouting of axons, remodeling of 
synapses, and compensatory reorganization of cognitive 
processes evolving over time.44 Time since stroke also pre-
dicted TT at BL and BNT at FU, however, no clear direc-
tion of correlation could be identified. The large time frame 
after stroke in our patient cohort, ranging from only 2 days 
to 25 years, may depict a non-linear recovery profile, with 
some phases after stroke being more beneficial for func-
tional recovery than others.

Figure 3.  The predictive effect of demographic, clinical, and brain-structural factors for language function after stroke.
Abbreviations: %IncMSE, percentage increase in the mean squared error; TT, Token Test; BNT, Boston Naming Test; sVF, Semantic Verbal Fluency 
test; MoCA, Montréal Cognitive Assessment; STG, superior temporal gyrus; MTG, middle temporal gyrus; IFG, inferior frontal gyrus; L, left 
hemisphere; R, right hemisphere.
Illustration of the predictive effect of individual predictor variables for TT, BNT, and sVF at baseline and 30-day follow-up, presented as the percentage 
increase in the mean squared error. Only variables with a minimum of 4% IncMSE are displayed. The direction of correlation is denoted above each 
bar: + indicates a positive correlation, − indicates a negative correlation, and o indicates no clear direction of correlation. The MoCA subscore is 
derived from the language-independent subtests visuospatial, attention, delayed recall, and orientation.
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Initial Language and Cognitive Function as 
Strong Predictors for Aphasia Severity

Our models consistently identified a higher initial language 
score as the most predictive factor for better longitudinal 
language function. Previous studies have demonstrated that 
higher initial language scores in naming, repetition, and 
comprehension predict better language function at 90 days 
and smaller language score change, accounting for 33% and 
41% of variance, respectively.42 In a subsequent study, the 
authors report that initial scores of a global measure of lan-
guage function explain 81% of variance of actual language 
score change over 90 days.10 This strong correlation might 
be attributed to varying amounts of therapy administered in 
that study. Our findings are further supported by another 
study, which reported that low initial scores in naming, 

repetition, and comprehension predict severe aphasia scores 
post-stroke.5 The inclusion of the initial language score as 
an additional predictor variable in our FU models likely 
contributed to the higher explained variance in the FU mod-
els compared to the BL models.

Our models further reveal a predictive effect of higher 
initial non-verbal cognitive ability for better language func-
tion post-stroke. Linguistic performance requires the 
recruitment of non-linguistic cognitive abilities, such as 
memory and executive function. Assessing language-inde-
pendent cognitive ability is challenging, given that the neu-
ral networks of non-verbal cognition and language are 
interrelated.6 The use of standard cognitive tests in aphasic 
patients is controversial, as they require a certain level of 
language comprehension for test instructions and language 
production for task execution. To address this challenge, we 

Figure 4.  The predictive effect of connectivity disruption of language-relevant gray matter regions for language function after 
stroke. (A) Glassbrain visualization depicting the average connectivity disruption scores of 13 left-hemispheric ROIs and their right-
hemispheric homologues after stroke (n = 76). A score of 1 on the color scale indicates complete disconnection of the ROI from the 
rest of the brain, while a score of 0 indicates fully intact connectivity of the ROI. Connectivity disruption was assessed via Change in 
Connectivity scores of the Network Modification tool (Kuceyeski et al25). (B) Glassbrain visualization illustrating the predictive effect 
of connectivity disruption of ROIs for language function after stroke (n = 76 at baseline, n = 67 at follow-up). A higher score on the 
color scale represents a greater %IncMSE when omitting an individual predictor variable from the model, indicating higher variable 
importance.
Abbreviations: %IncMSE, percentage increase in the mean squared error; ChaCo, Change in Connectivity; L, left hemisphere; R, right hemisphere; ROI, 
region of interest.
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measured non-verbal cognitive function with a MoCA sub-
score, excluding all subtests directly relying on language 
(ie, naming, language, and abstraction).

No Predictive Effect of rTMS or tDCS for 
Aphasia Severity

The NORTHSTAR trial was an intervention trial aiming at 
assessing the effects of rTMS and tDCS compared to sham 
stimulation. Zumbansen et  al26 reported a significantly 
greater improvement in picture naming (BNT) in the rTMS 
group compared to the tDCS and sham group. Additionally, 
the study found a significantly greater improvement in lan-
guage comprehension (TT) in the tDCS group compared to 
the rTMS group, 30 days post-intervention, in subacute 
stroke patients with intact Broca’s area.26 This add-on effect 
was only present in the subacute phase and could not be 
found in the chronic patient group.27 In our models, the type 
of intervention had no effect on predicting either language 
production or language comprehension at 30-day FU. We 
opted to use the total patient cohort, comprising subacute 
and chronic patients, and accounted for the phase by includ-
ing time after stroke as a potential predictor variable, as 
well as treatment arm. This decision was made because our 
sample size was not large enough to run the Random Forest 
analyses on the 2 subgroups.

Connectivity Disruption of the Language 
Network Predicts Aphasia Severity Beyond 
Lesion Size

Our models indicate that lesion volume predicts language 
comprehension (TT) and language expression (BNT) 
post-stroke. It is widely recognized that larger lesion size 
is associated with poorer language function and aphasia 
recovery.4-6,8,11,12 Lesion location may be a more specific 
parameter for predicting language function, as a small 
lesion in a key language region is more likely to impact 
language function than a large lesion in an area of the 
brain less important for language.11,13,14

In addition to the predictive effect of lesion volume, we 
demonstrated that connectivity disruption of 6 left-hemi-
spheric and 1 right-hemispheric language-relevant GM 
region had a predictive effect on language expression 
(BNT and sVF). Connectivity disruption of 10 left-hemi-
spheric and 1 right-hemispheric ROI had a predictive 
effect on language comprehension (TT) post-stroke 
(Figure 3). Interestingly, in some models, lesion volume 
demonstrated a smaller predictive effect on language func-
tion compared to connectivity disruption of specific criti-
cal GM regions, namely the left MTG, STG, and 
supramarginal gyrus. This was particularly notable in pre-
dicting the recovery of language comprehension (TT) at 
FU. Not only did connectivity disruption scores of those 3 

regions exhibit a more important effect than lesion vol-
ume, but they consistently emerged as among the stron-
gest predictors for both language comprehension (TT), as 
well as language production (BNT). The predictive role of 
STG integrity can be attributed to its involvement in early 
spectro-temporal analyses and its connection with the 
phonological network.20 Our findings align with a previ-
ous study that reported lesion load in the posterior STG of 
the left hemisphere as predictive of poorer naming perfor-
mance post-stroke.15 The predictive effect of connectivity 
disruption of the left MTG may be explained by its 
involvement in phoneme processing and lexical-syntactic 
analyses.20,45,46 The impact of connectivity disruption of 
the left supramarginal gyrus in our model may be caused 
by its role in phonological processing and speech repeti-
tion.46,47 Moreover, complex semantic processing of sen-
tences and context occurs in the conceptual network, 
including the inferior parietal lobe,37 which may explain 
the predictive effect of connectivity disruption of the left 
inferior parietal gyrus, as well as the angular gyrus, for 
language comprehension (TT) in our models.

Connectivity disruption of the left inferior parietal gyrus 
and the residual left hemisphere were the only brain-structural 
factors showing a small predictive effect for the sVF outcome. 
The sVF has previously been shown to involve executive con-
trol processes, such as monitoring working memory represen-
tations, inhibition ability to avoid repetition, and processing 
speed.48 Our sVF models did not demonstrate any major 
brain-structural predictors, which may be attributed to the 
hybrid test character and the recruitment of brain regions 
beyond our pre-selected language-specific ROIs.

Our models revealed the predictive role of preserved 
connectivity of the right-hemispheric insula for language 
function post-stroke. In contrast to left-hemispheric ROIs, 
which exhibited medium to high connectivity disruption 
scores (Table 2), right-hemispheric ROIs showed low con-
nectivity disruption scores, indicating largely preserved 
connections of ROI homologues. Language comprehension 
(TT) and language expression (BNT) were sensitive to 
small disruptions in connectivity of the right-hemispheric 
insula in our BL models. A connectivity disruption of the 
right insula as little as 1% was associated with a decrease in 
language scores. The insula is involved in coordinating 
higher-order aspects of speech and language production, as 
well as articulatory control.49 Right-hemispheric homo-
logues of the language network serve a compensatory role 
when the left-hemispheric language network is disrupted, 
as the brain shifts the function of regions with parenchymal 
damage and critical hypoperfusion to perilesional, distal 
ipsilesional and right-hemispheric homologue regions.50-52 
Progressive recovery of left-hemispheric regions leads to a 
reduction in the compensatory role of the right hemisphere, 
which might explain why the right hemisphere does not 
show any effect in our FU models.
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Differences in initial connectivity profiles of right-hemi-
spheric language homologues have been suggested to predict 
aphasia outcome post-stroke.53 Lower fractional anisotropy 
values of certain right-hemispheric homologue regions have 
been associated with significantly lower speech fluency after 
stroke.53 Diffusional changes in the WM of the right hemi-
sphere might be caused by mechanisms of Wallerian degenera-
tion elicited by the distant left-hemispheric lesion.53,54 A recent 
study further demonstrated a relationship between structural 
connectivity of right-hemispheric fiber tracts (assessed via 
quantitative anisotropy) and language production as well as lan-
guage comprehension.55 Our results support the role of intact 
structural connectivity of right-hemispheric homologues of 
language-specific regions for language function post-stroke.

Model-Based Versus Tractography-Based 
Connectivity Analysis

The applied model-based approach offers 2 clinical advan-
tages over the gold-standard individual tractogram-based 
approach (DTI) for quantification of connectivity disrup-
tion. First, the approach exclusively relies on structural T1/
FLAIR images collected as part of the clinical imaging rou-
tine. Second, applying model-based analyses is less com-
plex and labor-intensive than individual tractography, with 
minimal user interaction, and a high degree of automation. 
Additionally, the NeMo tool provides a quantitative metric 
for connectivity disruption rather than the probability of a 
track being disconnected.25

Previously, the NeMo tool has been used to predict vari-
ous clinical performance measures from structural connec-
tivity disruption in subacute stroke patients.24 This previous 
study reported connectivity disruption scores of the left hes-
chl gyrus and rolandic operculum to predict language func-
tion post-stroke.24 Our study, including both subacute and 
chronic aphasic stroke patients, builds upon these findings 
by modeling specific language functions rather than the 
overall aphasia score. Predicting different aspects of lan-
guage separately, instead of creating a composite score, was 
clinically more informative, as the recovery of language 
comprehension versus language expression makes an 
important difference in the lives of people suffering from 
aphasia.

Limitations

Despite our dataset being the largest dataset of stroke patients 
with aphasia from a prospective randomized controlled trial, 
for applying a machine-learning approach, the sample size 
was relatively small. To minimize the risk of overfitting, we 
decided not to conduct a separate analysis of subacute versus 
chronic patients. Instead, we included the number of days 
between stroke and BL assessment as potential predictor 

variable. Furthermore, the AAL atlas lacks finer segmenta-
tion of certain brain regions, particularly in the temporal 
lobe. While our Random Forest models might have bene-
fited from a brain atlas with a finer parcellation, selecting 
smaller regions could increase the risk of overfitting the 
model given the limited sample size. Moreover, measuring 
non-verbal cognitive function poses challenges. We used a 
MoCA subscore, excluding subtests directly assessing lan-
guage function, however, it must be acknowledged that even 
those subtests (eg, delayed recall and orientation) rely to 
some extent on language for understanding of test instruc-
tions and task execution. A completely independent, unbi-
ased test assessing language-independent cognitive function 
may not exist, given the strong interrelation between lan-
guage and cognition. Additionally, it needs to be considered 
that model outcomes may be influenced by technical factors 
such as the normalization procedure, and the accuracy of 
lesion mask drawing.

Conclusions and Future Directions

Structural connectivity disruption of key left-hemispheric 
language-relevant GM regions demonstrated a predictive 
effect for post-stroke language expression and comprehen-
sion beyond lesion volume, time post-stroke, non-verbal 
cognitive function, and initial language score. To identify, 
which other factors account for the unexplained variance in 
our models, the potential impact of reperfusion therapy on 
functional outcomes should be considered.56 Cardiovascular 
risk factors, including hypertension, dyslipidemia, diabetes 
mellitus, and atrial fibrillation, might also hold additional 
potential as predictive factors for language recovery. 
Improvement of our models could involve incorporating 
approaches that leverage multiple imaging modalities to 
assess lesion location information. This might include com-
bining structural methods (eg, DTI) with functional mea-
sures (eg, fMRI and PET) of connectivity disruption. 
Alternatively, indirect assessments of infarct-driven network 
dysfunction through lesion-behavior mapping,57 or struc-
tural and functional disconnection maps could be explored.58

We demonstrated that combining model-based structural 
connectivity analyses with Random Forest prediction mod-
eling offers a promising alternative strategy to traditional 
regression modeling for clinically prognosticating patients’ 
recovery trajectories. The resulting models can be easily 
applied to newly acquired patient data, enabling the predic-
tion of expected aphasia severity levels for individual 
patients post-stroke. This has the potential to guide patient-
centered treatment decisions. To this end, our work serves 
as a roadmap to efficiently optimize these prediction mod-
els in larger cohorts from existing databases, as long as 
brain images (MRI or CT) for infarct extraction are 
available.
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